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Interference Decoding for Deterministic Channels
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Abstract—An inner bound to the capacity region of a class of de-
terministic interference channels with three user pairs is presented.
The key idea is to simultaneously decode the combined interfer-
ence signal and the intended message at each receiver. It is shown
that this interference-decoding inner bound is tight under certain
strong interference conditions. The inner bound is also shown to
strictly contain the inner bound obtained by treating interference
as noise, which includes interference alignment for deterministic
channels. The gain comes from judicious analysis of the number
of combined interference sequences in different regimes of input
distributions and message rates. Finally, the inner bound is gener-
alized to the case where each channel output is observed through
a noisy channel.

Index Terms—Capacity region, deterministic model, inter-
ference alignment, interference channel, multiuser information
theory, network information theory, simultaneous non-unique
decoding.

I. INTRODUCTION

I NTERFERENCE channels with three or more user pairs ex-
hibit the interesting property that decoding at each receiver

is impaired by the joint effect of interference from all other
senders rather than by each sender’s signal separately. Conse-
quently, dealing directly with the effect of the combined inter-
ference signal is expected to achieve higher rates.

One such coding scheme is interference alignment, e.g., [1]
and [2], in which the code is designed so that the combined
interference signal at each receiver is confined (aligned) to a
subset of the receiver signal space. Depending on the specific
channel, this alignment may be achieved via linear subspaces,
signal scale levels, time delay slots, or number-theoretic bases
of rationally independent real numbers [3], [4]. In some cases,
e.g., the multiple-input multiple-output (MIMO) Gaussian in-
terference channel [2], the decoder simply treats interference
as noise. In general, however, decoding can be thought of as
a two-step procedure. In the first step, the received signal is
projected onto the desired signal subspace, e.g., by multiplying
it by a matrix as for the MIMO case [1], [2] or by separating
each received symbol into its constituent lattice points as for
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the scalar Gaussian case [4]. In the second step, interference-un-
aware decoding is performed on the projection of the received
signal. This decoding procedure often leads to an implicit de-
coding of some function of the undesired messages. Explicit de-
coding of the combined interference signals was first discussed
in [5] for the many-to-one Gaussian interference channel. The
authors argue that with Gaussian codes, decoding the combined
interference is tantamount to decoding each interfering sender’s
codeword. On the other hand, with structured (lattice) codes, the
combined interference can be made to appear essentially as a
codeword from a single interferer.

In general, for channels with inherent linearity such as
Gaussian interference channels, it is natural to consider de-
coding linear combinations of interfering codewords, instead of
individual codewords. This idea is developed in [6] for Gaussian
relay networks, leading to a compute-forward relaying scheme.

In this paper, we investigate interference decoding for the
three receiver deterministic interference channel (3-DIC)
depicted in Fig. 1. The channel consists of three sender-re-
ceiver alphabet pairs , loss functions , interfer-
ence combining functions , and receiver functions for

. The outputs of the channel are

where

(1)

We assume that and are one-to-one when either one of
their arguments is fixed. For example, for ,
this assumption is equivalent to and

for every probability mass function
(pmf) . Except for requiring the one-to-one property
to hold for both arguments, this channel model is an extension
of the Costa–El Gamal two-user-pair model [7]. Note that this
model is more general than the class of deterministic interfer-
ence channels studied in [8].

Each sender wishes to convey an independent
message at data rate to its corresponding receiver. We
define a code, probability of error, and
achievability of a given rate triple in the standard
way (see [9]).

We focus on this class of deterministic channels for several
reasons. First, the capacity region for the two-user-pair version
of this class [7] is known and is achieved by the Han–Kobayashi
scheme [10]. This gives some hope that an appropriate extension
of Han–Kobayashi where the combined interference is decoded
partially or fully may be optimal for more than two user pairs.
Second, this class includes the finite field deterministic model in
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Fig. 1. Block diagram of the 3-DIC for the first receiver.

[11], which approximates Gaussian interference channels in the
high SNR regime [12]. For more than two user pairs, capacity
results for the finite field deterministic model are known only
in some special cases [13], [14], where interference is treated
as noise. An interesting question is whether more sophisticated
coding schemes can achieve higher rates for this class of chan-
nels. Finally, the combined interference signal in our channel
takes values from a finite set, and therefore a certain type of
alignment can be observed without resorting to complicated
structured codes [15].

The main result of the paper is an inner bound on the ca-
pacity region of the 3-DIC, which is achieved via interference
decoding. We assume point-to-point codes without rate splitting
or superposition coding since such codes are widely deployed
and it is interesting to investigate the benefit of using a more
sophisticated receiver instead of treating interference as noise.
Specifically, each receiver simultaneously decodes the intended
message and the combined interference without penalizing in-
correct decoding of the latter. Of course, one does not expect this
scheme to be optimal in general, since even for the two-user-pair
case, superposition coding is required for optimality. Note that
for our class of deterministic channels, algebraic structures such
as linear subspaces or lattices do not exist in general. Hence, our
decoder does not use the two-step procedure as in the work on
Gaussian channels and their corresponding high SNR determin-
istic models.

The key observation is that depending on the input pmfs and
the message rates, the number of possible combined interference
sequences can be equal to the number of interfering message
pairs, the number of typical combined interference sequences,
or some combination of the two. In our scheme, each sender
does not need to know the other senders’ codebooks. However,
we use simultaneous decoding, which requires that the receivers
know all codebooks. As in the recent characterization of the
Han–Kobayashi region [16], we do not require the interference
decoding to be correct with arbitrarily small probability of error.

In the following section, we summarize and discuss the
main results in this paper. The proofs of these results are
given in Sections III, IV and V, with some details deferred
to the Appendix. In Section VI, we give final remarks on the
optimality of interference decoding. Throughout the rest of the
paper, notation and basic definitions follow [9].

II. SUMMARY OF MAIN RESULTS

The main results in this paper are as follows.

A. Interference-Decoding Inner Bound

Fix the random tuple
, where is a time-sharing random variable

from alphabet . Define the region to
consist of the rate triples such that

(2)

(3)

(4)

(5)

Similarly define the regions and
by making the subscript replacements

and in ,
respectively.

Theorem 1 (Interference-Decoding Inner Bound): The region

where and
is an inner bound to the capacity region of the 3-DIC.

The proof for this theorem is given in Section III.
Region ensures decodability at receiver

. The terms on the left-hand side of the inequalities arise
from counting the number of possible interfering sequences
at various links of the channel. For example, consider the

term in (3). If is small, the number
of distinct sequences that can occur at is equal to the
number of possible messages from sender 2. As increases
beyond , the number of possible sequences at

“saturates” to the number of typical sequences, which is
roughly . In this case, we can increase the rate of
the second sender further without negatively impacting the first
receiver. The expressions in (4) and (5) likewise capture
the saturation effects at and , respectively.

An example of region is plotted in Fig. 2.
The region is unbounded in the and directions, due to
saturation. This is expected, since regardless of the values of

and can always be treated as noise to achieve a
nonzero rate. However, as and become smaller, the pro-
posed scheme takes advantage of the structure in and can
thereby increase .

B. Capacity Region Under Strong Interference

Consider the subclass of 3-DIC with strong interference and
invertible in which the following two conditions hold.

First, the loss functions are such that
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Fig. 2. Region showing allowable rate triples for decodability at the first
receiver.

for all product input pmfs . This condition im-
plies that interference is strong.

Second, the functions are invertible, i.e.,

for all product input pmfs . With the condi-
tional invertibility property of , the channel becomes a non-
symmetric version of the deterministic model for the SIMO in-
terference channel described in [8]. In both cases, a receiver
can uniquely recover both interfering signals given the received
sequence and the desired transmitted sequence. The capacity
region under these conditions is achieved by interference de-
coding.

Theorem 2: The capacity region of the 3-DIC under strong
interference and invertible functions is the set of rate triples

such that

for some . The
proof of this theorem is given in Section IV.

C. Treating Interference as Noise

In the two-user-pair interference channel, decoding both mes-
sages at each receiver and treating interference as noise are con-
sidered as two extreme schemes. The extremes are bridged by
the Han–Kobayashi scheme in which part of the interference is
decoded and the rest is treated as noise [9]. While treating inter-
ference as noise is better for channels with weak interference,
decoding both messages is optimal under strong interference.

We show surprisingly that for the 3-DIC under consideration,
treating interference as noise is a special case of interference
decoding!

By using randomly and independently generated codebooks
as for the interference-decoding inner bound, but having each
receiver decode only its message, we obtain the following inner
bound.

Lemma 1 (Treating Interference as Noise): The set of
rate triples such that

(6)

for some pmf constitutes an inner
bound to the capacity region of the general three-user-pair mem-
oryless interference channel.
Note that in contrast to interference decoding, a user pair does
not need to know the codebooks of other user pairs. Also note
that this inner bound, with appropriate selections of the input
pmfs, includes the interference alignment inner bounds in [2],
[13], [14]. Maximum alignment is achieved when the number
of combined interference sequences, e.g., , is much smaller
than the number of individual interference sequence pairs, e.g.,

. Since , this
occurs when is small, causing the number of se-
quences to saturate.

In Section V, we establish the following result.

Theorem 3: The rate region achievable by treating interfer-
ence as noise is included in the interference-decoding rate re-
gion, i.e., .

The difference between treating interference as noise and
interference decoding is essentially that the former assumes that
the combined interference signal is always saturated, while
the latter distinguishes between saturated and non-saturated
cases. Later in this section, we argue that the above inclusion
result is tightly coupled to the definition of the 3-DIC.

The following example shows that the inclusion of Theorem
3 can be strict, i.e., the treating interference as noise region is
strictly contained in the interference-decoding region.

Additive 3-DIC Example: Consider a cyclically symmetric
3-DIC with , and

, where
and as well as

and . The direct path loss functions are the
identity mapping, , while the cross path loss functions are
given by and

(similar to the Blackwell broadcast channel [17]).
Finally, the combining functions and receiver functions are
taken to be addition. The resulting input-to-output mapping is
shown in Fig. 3.

For this channel, the interference-decoding rate region strictly
contains the region achievable by treating interference as noise.
To demonstrate this, we computed the approximations of the
inner bounds shown in Fig. 4(a) and (b). Since it is computa-
tionally infeasible to enumerate the 13 different conditional dis-
tributions of inputs given as required by Theorem 1, we used
the following procedure. We first assume and consider a
grid over all input distributions . For each grid
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Fig. 3. Additive 3-DIC example.

point, we compute the achievable rate regions as given by The-
orem 1 and Lemma 1, respectively. We represent the regions as
the convex hull of its corner points. The final approximation is
obtained by taking the union of all such corner points over the
grid. Due to the simple structure of in Lemma 1, which
consists of a union of rectangular boxes, this method can com-
pute to arbitrary precision provided the grid is sufficiently
fine. On the other hand, our approximation method yields a pos-
sibly strictly smaller inner bound than .

Fig. 4(c) depicts the intersection of the three-dimensional re-
gions with the plane defined by the axis and the 45 -line be-
tween the and axes. This plane is also shown in Fig. 4(a).
Note that the same maximum sum rate is achieved
by both schemes. However, while treating interference as noise
does so at exactly one rate triple , interfer-
ence decoding achieves the maximal sum rate at many different
asymmetric rate triples.

Remark 1: Treating interference as noise can be optimal
in some cases. Consider the three-user-pair cyclically sym-
metric finite field deterministic model investigated in [14],
which is a special case of the channel considered in this paper.
The input and output alphabets for this channel are and

, respectively, the loss functions are vector shifting
operations, where the amount of shift is parameterized by

, and the interference combining func-
tions and the receiver functions are componentwise
additions over .

The sum capacity of this channel is computed in [14] for
a large range of , and achievability is established by
constructing linear encoding and decoding matrices for every

. This scheme can be interpreted as treating interference
as noise, and thus Lemma 1 subsumes the achievability results
in [14]. In fact, the necessary input distributions are the ones
implicitly stated there.

It would be interesting to investigate whether interference de-
coding can achieve higher sum rates than treating interference as
noise in the range where the sum capacity is not known.

Fig. 4. Inner bounds for the additive 3-DIC example. (a) Treating interference
as noise. (b) Interference decoding. (c) Intersection with 45 -plane.

Moreover, even in the range where we know the sum capacity,
interference decoding may achieve higher asymmetric rates than
treating interference as noise, as in the additive 3-DIC example.
The main challenge in settling these questions is the prohibi-
tively large space of possible input distributions in Theorem 1.

D. Extension to 3-DIC With Noisy Observations

Finally, we consider the 3-DIC with noisy observations.
In this generalization of 3-DIC, the channel outputs in (1)
are observed through memoryless channels for

. Thus receiver now observes a noisy version
of , which may be from a discrete or a continuous alphabet.
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The interference-decoding inner bound generalizes
to the 3-DIC with noisy observations as follows. Let

. Define the re-
gion as the set of rate triples
such that

Similarly, define the regions and
by making the subscript replacements

and in ,
respectively.

Theorem 4: The region

where is an
inner bound to the capacity region of the 3-DIC with noisy
observations.
The proof of this theorem proceeds completely analogously to
the proof of Theorem 1 as presented in Section III, and thus its
details are omitted.

The following example demonstrates the inner bound for the
3-DIC with noisy observations. It also shows that the inclusion
of Theorem 3 does not hold in general for this channel model.

Gaussian Interference Channel Example: Consider the
Gaussian interference channel with finite input alphabets. The
channel output at receiver is

(7)

where is the path gain from transmitter to receiver
, and is additive white Gaussian noise of average power
. This is a realistic model for a wireless interference channel

where the transmitter hardware is based on digital signal pro-
cessing (DSP) and digital-to-analog conversion (DAC). For
example, represents a system with a binary
constellation, e.g., binary phase-shift keying (BPSK). Equation
(7) represents continuous-valued outputs (soft outputs), but our
model would also apply if a quantizer is added (hard outputs),
for example due to analog-digital conversion (ADC) at the
receivers.

Fig. 5 shows approximations of the inner bounds for a cycli-
cally symmetric Gaussian interference channel with BPSK in-
puts and continuous outputs. In contrast to the noiseless case,
neither the interference-decoding region nor the region achieved
by treating interference as noise contains the other, i.e., Theorem

Fig. 5. Rate regions achieved by interference decoding (dashed out-
line) and treating interference as noise (shaded) for a cyclically sym-
metric Gaussian interference channel with � � �������, path gains
� � ���� � � ���� � � ���, and noise power � � ���.

3 does not hold for 3-DIC with noisy observations. In particular,
the sum rates achieved by treating interference as noise and in-
terference decoding are 2.51 and 2.37, respectively. Intuitively,
interference decoding attempts to separate the combined inter-
ference from the additive noise. As such, it may achieve lower
rates than simply treating interference as noise for which this
separation is not enforced. This discrepancy is more pronounced
for low values of SNR, and it vanishes asymptotically as SNR
grows.

III. PROOF OF INTERFERENCE-DECODING INNER BOUND

We first present two key lemmas which formalize the no-
tion of link saturation as discussed after Theorem 1. The proofs
are deferred to the Appendix. The first lemma generalizes the
packing lemma stated in [9].

Lemma 2 (Packing Lemma for Pairs): Let
. Let . For

each , let .
For each , let ,
conditionally independent of each given . Let

, conditionally independent of
each and given . There exists a with

such that if

then for some
as , where typicality, entropies and mutual information
are with respect to .

The following lemma is a refined version of Lemma 2, where
the sequences are generated from two conditionally in-
dependent components and .

Lemma 3: Let
, where corre-

sponds to a deterministic mapping .
Let . For each , let

. For each , let
, conditionally independent of

each given . Likewise, for each ,
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Fig. 6. Capacity region for a deterministic MAC. The number of output se-
quences as a function of the number of input sequences is stated in each region.

let , conditionally independent
of each and given . For each , let

for . Finally, let
, conditionally independent of each

, and given .
There exists a function with such that

if

then for some
as , where typicality, entropies and

mutual information are with respect to .

Remark 2: The intuition is that can be interpreted as the
output of a deterministic multiple access channel with inputs
and and input to output mapping . Fig. 6 shows the number
of output sequences for different ranges of and when

is one-to-one in each argument. Note that when is
in the deterministic MAC capacity region, the number of output
sequences is simply . For outside the
capacity region, the number of output sequences saturates in
one or both dimensions. The logarithm of the number of output
sequences divided by appears in the expression of the
lemma.

We are now ready to prove Theorem 1. We begin by fixing a
pmf .

Codebook Generation: Randomly generate a sequence ac-
cording to . For each , randomly and
conditionally independently generate sequences

, each according to . From the
channel definition, this procedure induces intermediate se-
quences for , combined interference
sequences , and output
sequences .

Encoding: To send the message
, encoder transmits .

Decoding: Upon observing , decoder 1 declares that
is sent if it is the unique message such that

for some , where
is defined as in [9]. Decoding at the other receivers is per-

formed similarly.

Analysis of the Probability of Error: Without loss of gener-
ality, assume that for . Define

,
and the events

Then the probability of decoding error at the first receiver aver-
aged over codebooks is upper bounded as

. We bound each term. First, by
the law of large numbers, as .

Next consider

By Lemma 2 with ,
and , the probability of this event tends to zero
as if

which simplifies to

(8)

The event can be treated similarly. Consider

Using Lemma 2 with
, and , we conclude that if

or, equivalently

(9)

can be analyzed in an identical fashion to , and we
have as if

(10)

Finally, the event is augmented as
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Lemma 3 with
, and shows that

as if

(11)

where we have used . Collecting
(8) to (11) yields the conditions of . The probability of
error at the second and third receiver can be bounded similarly,
leading to the conditions of and . Finally, the cardinality
bound on can be established using the bounding technique
described in [9].

IV. PROOF OF THEOREM 2

Proof of Achievability: We prove achievability with inter-
ference decoding. Specifically, we show that under strong in-
terference and invertible , regions of Theorem 1 sim-
plify to regions below while maintaining

.
Recall the definition of as the set of rate

triples that satisfy (2) to (5). Further recall the
analogous definitions of and , which include

(12)

(13)

When combined with the strong interference assumption, (12)
and (13) imply that the expressions in (3) and (4) simplify
to and , respectively. Furthermore, the sum of (12) and
(13) implies that

where we have used the invertibility of . Therefore, the
expression in (5) simplifies to .

Consequently, define as the set of rate
triples such that

Likewise, define the regions and
by replacing subscripts following

and in ,
respectively. Then Theorem 1 implies that

is achievable, and the proposition follows by expanding the in-
tersection operation.

Proof of Converse: Consider a code with rates
, empirical pmf , and

tending to 0 as . First, note that

where is a time-sharing random variable uniformly dis-
tributed over . Next, consider

where we have used and
. In the same way, it can be

shown that

Finally

Thus, all four conditions related to the first receiver have been
shown. Analogous steps yield the remaining bounds.

V. PROOF OF THEOREM 3

We show that the inner bound in Lemma 1 is included in
the inner bound of Theorem 1. The conditions of region in
Theorem 1 can be made more stringent by replacing the
expression with any one of its argument terms. For example,

is implied by
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or, equivalently

(14)

To simplify this expression, consider

as well as

and, by symmetry

Thus, the in (14) is always achieved by the last term, and
(14) simplifies to

Using a similar argument, it follows that the conditions for
and in Theorem 1 are implied by (6).

Remark 3: In the case with noisy observations, this proof fails
in the following manner. Interference decoding entails

The first term is the achievable rate when treating interference
as noise. The second term is zero when the channel is noiseless
and acts as a penalty when noise is introduced.

VI. FINAL REMARKS

This paper presented an interference-decoding inner bound
to the capacity region of a class of three-user-pair deterministic
interference channels. We showed that this inner bound strictly

Fig. 7. 2-DIC example. (a) Block diagram of the channel. (b) Capacity region
and inner bounds.

includes the interference-as-noise region. As in treating interfer-
ence as noise, the interference-decoding scheme uses point-to-
point codes. The decoder in interference decoding, however, is
more sophisticated.

We showed that interference decoding is optimal under strong
interference and function invertibility conditions. The scheme is
not optimal in general, however. To exemplify this, we consider
the following two-user-pair deterministic interference channel
for which the capacity region is known.

Consider the 2-DIC in Fig. 7(a) with input alphabets
, loss functions

and , and receiver func-
tions being addition. (The interference combining func-
tions and are not relevant in this case.) The outputs of the
channel are thus given by

The interference-decoding inner bound in Theorem 1 reduces
to the set of rate pairs such that

for some .
Fig. 7(b) compares this inner bound to the capacity region

given in [7] and to the region achievable by treating inter-
ference as noise (Lemma 1). Not surprisingly, interference
decoding does not achieve the full capacity. To achieve ca-
pacity, Han–Kobayashi rate splitting and superposition coding
are needed.
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APPENDIX

A. Proof of Lemma 2

Applying the packing lemma [9] with ,
and immediately establishes the convergence if

. Next, we prove convergence when
. To this end, we bound

the probability of the event in question as follows:

Upon closer inspection, the union in the last probability term
potentially contains duplicate events, for example if

. Those duplicates can be eliminated. By pessimistically
assuming that the set is equal to

, we can write

(15)

In step (a), we use the upper bound on the size of the conditional
typical set and the joint typicality lemma [9] with

and . Strictly speaking, the joint
typicality lemma holds only if ,
which does not necessarily follow from
and as given in our sum expression.
However, for the cases where ,
we have , and the
bound from the joint typicality lemma still holds (though very

loosely). Substituting from (15) into the previous inequality, we
obtain

Clearly, this probability converges to zero as if
. Completely symmetrically,

convergence follows from
. Thus convergence is implied by

, and the
desired result follows by recalling that

.

B. Proof of Lemma 3

The first and last term in the expression follow imme-
diately from Lemma 2 by disregarding the special structure of

. For the second term, we argue similarly

There are at most distinct events in the
union expression. Using a similar line of reasoning as in
the proof of Lemma 2, we can upper bound the last prob-
ability term by . Substituting
into the previous inequality, we obtain the upper bound

on the probability of
the event of interest. Clearly, this expression converges to zero
as if .
We have thus established the second term in the expression.
The third term follows in a symmetric manner.
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